Abstract
We present an approach for convolving single-nucleotide variants (SNVs) with a position kernel in order to augment SNVs with information about close-by SNVs. By means of the Position-Dependent Kernel Association Test (PODKAT), we demonstrate the potential of this approach to leverage the analysis of rare and private SNVs. Finally, we also provide some ideas how machine-learning based predictions from genomic data can benefit from this augmentation.
Originalsprache | Englisch (Amerika) |
---|---|
Publikationsstatus | Veröffentlicht - Dez. 2017 |
Extern publiziert | Ja |
Veranstaltung | NIPS Workshop on Machine Learning in Computational Biology - Long Beach, CA, USA/Vereinigte Staaten Dauer: 9 Dez. 2017 → 9 Dez. 2017 |
Workshop
Workshop | NIPS Workshop on Machine Learning in Computational Biology |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Zeitraum | 09.12.2017 → 09.12.2017 |