Parameter identification of a wind generator unit RMS model using sparse grid optimization algorithm

Qing Fang, Rastko Zivanovic

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

This paper presents a global sparse grid optimization algorithm applied in parameter identification of a wind generation Root Mean Square (RMS) phasor model. The details of vendor specific RMS models used in dynamic simulation software (e.g. PSSE) are not provided by manufacturers. Therefore, there is a need to develop a procedure which can convert vendor specific models to standardized generic models (e.g. International Electrotechnical Commission model, IEC model). The procedure we propose, identifies the parameters of the IEC generic model using dynamic response of a given vendor specific model as input. The IEC model parameters can be found and dynamic response of the vendor model can be approximated with sufficient accuracy. In the simulation example we show that the parameter identification based on the global sparse grid optimization algorithm is effective in converting a vendor specific model to a standardized generic model.

OriginalspracheEnglisch
TitelProceedings of 2014 International Conference on Modelling, Identification and Control, ICMIC 2014
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten283-288
Seitenumfang6
ISBN (elektronisch)9780956715746
DOIs
PublikationsstatusVeröffentlicht - 23 Jän. 2015
Extern publiziertJa
Veranstaltung6th International Conference on Modelling, Identification and Control, ICMIC 2014 - Melbourne, Australien
Dauer: 3 Dez. 20145 Dez. 2014

Publikationsreihe

NameProceedings of 2014 International Conference on Modelling, Identification and Control, ICMIC 2014

Konferenz

Konferenz6th International Conference on Modelling, Identification and Control, ICMIC 2014
Land/GebietAustralien
OrtMelbourne
Zeitraum03.12.201405.12.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parameter identification of a wind generator unit RMS model using sparse grid optimization algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren