Outlier/Anomaly Detection of Univariate Time Series: A Dataset Collection and Benchmark

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In this paper, we present an extensive collection of outlier/anomaly detection tasks to identify unusual series from a given time series dataset. The presented work is based on the popular UCR time series classification archive. In addition to the detection tasks, we provide curated benchmarks, an evaluation scheme and baseline results. The resulting unusual time series detection collection is openly available at: https://outlier-detection.github.io/utsd/.

OriginalspracheEnglisch
TitelBig Data Analytics and Knowledge Discovery - 24th International Conference, DaWaK 2022, Proceedings
Redakteure/-innenRobert Wrembel, Johann Gamper, Gabriele Kotsis, Ismail Khalil, A Min Tjoa
Herausgeber (Verlag)Springer
Seiten163-169
Seitenumfang7
ISBN (Print)9783031126697
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung24th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2022 - Vienna, Österreich
Dauer: 22 Aug. 202224 Aug. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13428 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz24th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2022
Land/GebietÖsterreich
OrtVienna
Zeitraum22.08.202224.08.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Outlier/Anomaly Detection of Univariate Time Series: A Dataset Collection and Benchmark“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren