Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis

Stephan Dreiseitl, Melanie Osl, Christian Scheibboeck, Michael Binder

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

36 Zitate (Scopus)

Abstract

BACKGROUND: Medical diagnosis and prognosis using machine learning methods is usually represented as a supervised classification problem, where a model is built to distinguish "normal" from "abnormal" cases. If cases are available from only one class, this approach is not feasible.

OBJECTIVE: To evaluate the performance of classification via outlier detection by one-class support vector machines (SVMs) as a means of identifying abnormal cases in the domain of melanoma prognosis.

METHODS: Empirical evaluation of one-class SVMs on a data set for predicting the presence or absence of metastases in melanoma patients, and comparison with regular SVMs and artificial neural networks.

RESULTS: One-class SVMs achieve an area under the ROC curve (AUC) of 0.71; two-class algorithms achieve AUCs between 0.5 and 0.84, depending on the available number of cases from the minority class.

CONCLUSION: One-class SVMs offer a viable alternative to two-class classification algorithms if class distribution is heavily imbalanced.

OriginalspracheEnglisch
Seiten (von - bis)172-176
Seitenumfang5
FachzeitschriftAMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium
Jahrgang2010
PublikationsstatusVeröffentlicht - 2010

Fingerprint

Untersuchen Sie die Forschungsthemen von „Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren