Optimized Density Matrix Representations: Improving the Basis for Noise-Aware Quantum Circuit Design Tools

Thomas Grurl, Jürgen Fuß, Robert Wille

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

By exploiting quantum mechanical effects, quantum computers can tackle problems that are infeasible for classical computers. At the same time, these quantum mechanical properties make handling quantum states exponentially hard - imposing major challenges on design tools. In the past, methods such as tensor networks or decision diagrams have shown that they can often keep those resource requirements in check by exploiting redundancies within the description of quantum states. But developments thus far focused on pure quantum states which do not provide a physically complete picture and, e.g., ignore frequently occurring noise effects. Density matrix representations provide such a complete picture, but are substantially larger. At the same time, they come with characteristics that allow for a more compact representation. In this work, we unveil this untapped potential and use it to provide a decision diagram representation that is optimized for density matrix representations. By this, we are providing a basis for more efficient design tools such as quantum circuit simulation which explicitly takes noise/error effects into account.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE 53rd International Symposium on Multiple-Valued Logic, ISMVL 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten141-146
Seitenumfang6
ISBN (elektronisch)9781665464161
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung53rd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2023 - Matsue, Shimane, Japan
Dauer: 22 Mai 202324 Mai 2023

Publikationsreihe

NameProceedings of The International Symposium on Multiple-Valued Logic
Band2023-May
ISSN (Print)0195-623X

Konferenz

Konferenz53rd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2023
Land/GebietJapan
OrtMatsue, Shimane
Zeitraum22.05.202324.05.2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimized Density Matrix Representations: Improving the Basis for Noise-Aware Quantum Circuit Design Tools“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren