Optimization of keyword grouping in biomedical information retrieval using evolutionary algorithms

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

The amount of data available in the field of life sciences is growing exponentially; therefore, intelligent information search strategies are required to find relevant information as fast and correctly as possible. In this paper we propose a document keyword clustering approach: On the basis of a given set of documents, we identify groups of keywords found in the given documents. Having developed those clusters, the complexity of the data base can be handled much easier: Future user queries can be extended with terms found in the same clusters as those originally defined by the user. In this paper we present a framework for representing and evaluating keyword clusters on a given data basis as well as a simple evolutionary algorithm (based on an evolution strategy) that shall find optimal keyword clusters. In the empirical section of this paper we document first results obtained using a data set published at the TREC-9 conference.

OriginalspracheEnglisch
Titel22th European Modeling and Simulation Symposium, EMSS 2010
Seiten25-30
Seitenumfang6
PublikationsstatusVeröffentlicht - 2010
Veranstaltung22th European Modeling and Simulation Symposium, EMSS 2010 - Fes, Marokko
Dauer: 13 Okt. 201015 Okt. 2010

Publikationsreihe

Name22th European Modeling and Simulation Symposium, EMSS 2010

Konferenz

Konferenz22th European Modeling and Simulation Symposium, EMSS 2010
Land/GebietMarokko
OrtFes
Zeitraum13.10.201015.10.2010

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optimization of keyword grouping in biomedical information retrieval using evolutionary algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren