Optical quality control using deep learning

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Optical quality control is still often performed by people and always carries the risk of human error. A modern approach in order to solve this issue is the usage of artificial intelligence to boost performance and reliability. This paper focuses on implementing a prototype for optical quality control based on the YOLOv3 algorithm. This is a state-of-the-art object detection system that uses deep learning to detect different classes of objects within an image. Instead of different kinds of objects, the classes in this prototype were different quality levels of a strawberry. The dataset for this task was gathered by taking photos and using images from the internet. The strawberries on these images were labeled and fed to the YOLOv3 algorithm for training. Despite the poor detection rate, the results showed that it is generally possible to use such systems for detecting different quality levels of products.

OriginalspracheEnglisch
Titel31st European Modeling and Simulation Symposium, EMSS 2019
Redakteure/-innenMichael Affenzeller, Agostino G. Bruzzone, Francesco Longo, Guilherme Pereira
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
Seiten119-127
Seitenumfang9
ISBN (elektronisch)9788885741263
PublikationsstatusVeröffentlicht - 2019
Veranstaltung31st European Modeling and Simulation Symposium, EMSS 2019 - Lisbon, Portugal
Dauer: 18 Sep. 201920 Sep. 2019

Publikationsreihe

Name31st European Modeling and Simulation Symposium, EMSS 2019

Konferenz

Konferenz31st European Modeling and Simulation Symposium, EMSS 2019
Land/GebietPortugal
OrtLisbon
Zeitraum18.09.201920.09.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Optical quality control using deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren