Operon C++: An efficient genetic programming framework for symbolic regression

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

72 Zitate (Scopus)

Abstract

Genetic Programming (GP) is a dynamic field of research where empirical testing plays an important role in validating new ideas and algorithms. The ability to easily prototype new algorithms by reusing key components and quickly obtain results is therefore important for the researcher. In this paper we introduce Operon, a C++ GP framework focused on performance, modularity and usability, featuring an efficient linear tree encoding and a scalable concurrency model where each logical thread is responsible for generating a new individual. We model the GP evolutionary process around the concept of an offspring generator, a streaming operator that defines how new individuals are obtained. The approach allows different algorithmic variants to be expressed using high-level constructs within the same generational basic loop. The evaluation routine supports both scalar and dual numbers, making it possible to calculate model derivatives via automatic differentiation. This functionality allows seamless integration with gradient-based local search approaches. We discuss the design choices behind the proposed framework and compare against two other popular GP frameworks, DEAP and HeuristicLab. We empirically show that Operon is competitive in terms of solution quality, while being able to generate results significantly faster.

OriginalspracheEnglisch
TitelGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten1562-1570
Seitenumfang9
ISBN (elektronisch)9781450371278
DOIs
PublikationsstatusVeröffentlicht - 8 Juli 2020
Veranstaltung2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, Mexiko
Dauer: 8 Juli 202012 Juli 2020

Publikationsreihe

NameGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion

Konferenz

Konferenz2020 Genetic and Evolutionary Computation Conference, GECCO 2020
Land/GebietMexiko
OrtCancun
Zeitraum08.07.202012.07.2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Operon C++: An efficient genetic programming framework for symbolic regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren