Abstract
Diversity represents an important aspect of genetic programming, being directly correlated with search performance.
When considered at the genotype level, diversity often requires expensive tree distance measures which have a negative impact on
the algorithm’s runtime performance. In this work we introduce a fast, hash-based tree distance measure to massively speed-up
the calculation of population diversity during the algorithmic run. We combine this measure with the standard GA and the
NSGA-II genetic algorithms to steer the search towards higher diversity. We validate the approach on a collection of benchmark
problems for symbolic regression where our method consistently outperforms the standard GA as well as NSGA-II configurations
with different secondary objectives.
Originalsprache | Englisch |
---|---|
Titel | 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings |
Herausgeber (Verlag) | IEEE Computational Intelligence Society |
Seiten | 2175-2182 |
Seitenumfang | 8 |
ISBN (elektronisch) | 9781728121536 |
ISBN (Print) | 1089-778X |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2019 |
Veranstaltung | IEEE Congress on Evolutionary Computation - Wellington, New Zealand, Australien Dauer: 10 Juni 2019 → 13 Juni 2019 http://cec2019.org/index.html |
Publikationsreihe
Name | 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings |
---|
Konferenz
Konferenz | IEEE Congress on Evolutionary Computation |
---|---|
Land/Gebiet | Australien |
Ort | Wellington, New Zealand |
Zeitraum | 10.06.2019 → 13.06.2019 |
Internetadresse |
Schlagwörter
- symbolic regression
- genetic programming
- multi-objective symbolic regression
- tree distance
- genetic diversity