On crossover success rate in genetic programming with offspring selection

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

A lot of progress towards a theoretic description of genetic programming in form of schema theorems has been made, but the internal dynamics and success factors of genetic programming are still not fully understood. In particular, the effects of different crossover operators in combination with offspring selection are still largely unknown. This contribution sheds light on the ability of well-known GP crossover operators to create better offspring (success rate) when applied to benchmark problems. We conclude that standard (sub-tree swapping) crossover is a good default choice in combination with offspring selection, and that GP with offspring selection and random selection of crossover operators does not improve the performance of the algorithm in terms of best solution quality or efficiency.

OriginalspracheEnglisch
TitelGenetic Programming - 12th European Conference, EuroGP 2009, Proceedings
Seiten232-243
Seitenumfang12
Band5481
Auflage1
DOIs
PublikationsstatusVeröffentlicht - 2009
Veranstaltung12th European Conference on Genetic Programming, EuroGP 2009 - Tubingen, Deutschland
Dauer: 15 Apr. 200917 Apr. 2009

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band5481 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz12th European Conference on Genetic Programming, EuroGP 2009
Land/GebietDeutschland
OrtTubingen
Zeitraum15.04.200917.04.2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „On crossover success rate in genetic programming with offspring selection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren