On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data

Andreas Holzinger, Christof Stocker, Andreas Auinger, Manuel Bruschi, Hugo Silva, Hugo Gamboa, Ana Fred

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

19 Zitate (Scopus)

Abstract

Information entropy as a universal and fascinating statistical concept is helpful for numerous problems in the computational sciences. Approximate entropy (ApEn), introduced by Pincus (1991), can classify complex data in diverse settings. The capability to measure complexity from a relatively small amount of data holds promise for applications of ApEn in a variety of contexts. In this work we apply ApEn to ECG data. The data was acquired through an experiment to evaluate human concentration from 26 individuals. The challenge is to gain knowledge with only small ApEn windows while avoiding modeling artifacts. Our central hypothesis is that for intra subject information (e.g. tendencies, fluctuations) the ApEn window size can be significantly smaller than for inter subject classification. For that purpose we propose the term truthfulness to complement the statistical validity of a distribution, and show how truthfulness is able to establish trust in their local properties
OriginalspracheEnglisch
TitelActive Media Technology - 8th International Conference, AMT 2012, Proceedings
Herausgeber (Verlag)Springer
Seiten646-657
Seitenumfang12
ISBN (Print)978-3-642-35235-5
DOIs
PublikationsstatusVeröffentlicht - 2012
VeranstaltungInternational Conference on Active Media Technology - Macau, China
Dauer: 4 Dez. 20127 Dez. 2012
http://www.fst.umac.mo/wic2012/AMT/

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7669 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzInternational Conference on Active Media Technology
Land/GebietChina
OrtMacau
Zeitraum04.12.201207.12.2012
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren