Nonparametric trend model for short term electricity demand forecasting

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

4 Zitate (Scopus)

Abstract

In this paper, we present a novel nonparametric algorithm for short term electricity demand forecasting. The algorithm is based on local linear regression using sliding window with variable length. The method for selecting optimal window length for each local fit offers close insight into trade-off between bias and standard deviation of local regressions. Optimal window length is selected for each value in the load time-series: large window for linear change of load to reduce variability and small window when load departs from linear function to control bias. In the presented algorithm local linear regression is used to estimate trend component of the load time series and to forecast trend component by extrapolating with the fitted local linear function. Some features of the algorithm are demonstrated in the paper using examples from the historic load data recorded in the Namibian Power Utility.

OriginalspracheEnglisch
Seiten (von - bis)347-352
Seitenumfang6
FachzeitschriftIEE Conference Publication
Ausgabenummer488
DOIs
PublikationsstatusVeröffentlicht - 2002
Extern publiziertJa
Veranstaltung5th International Conference on Power System Management and Control - London, Großbritannien/Vereinigtes Königreich
Dauer: 17 Apr. 200219 Apr. 2002

Fingerprint

Untersuchen Sie die Forschungsthemen von „Nonparametric trend model for short term electricity demand forecasting“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren