New Genetic Programming Hypothesis Search Strategies for Improving the Interpretability in Medical Data Mining Applications

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitrag

Abstract

In this paper we describe a new variant of offspring selection applied to medical diagnosis modeling which is designed to guide the hypothesis search of genetic programming towards more compact and more easy to interpret prediction models. This new modeling approach aims to combat the bloat phenomenon of genetic programming and is evaluated on the basis of medical benchmark datasets. The classification accuracies of the achieved results are compared to those of published results known from the literature. Regarding compactness the models are compared to genetic programming prediction models achieved without the new offspring selection variant.
OriginalspracheEnglisch
Titel23rd European Modeling and Simulation Symposium, EMSS 2011
Seiten448-453
Seitenumfang6
PublikationsstatusVeröffentlicht - 2011
Veranstaltung23rd IEEE European Modeling & Simulation Symposium EMSS 2011 - Roma, Italien
Dauer: 12 Sep. 201114 Sep. 2011
http://www.msc-les.org/conf/emss2011/

Publikationsreihe

Name23rd European Modeling and Simulation Symposium, EMSS 2011

Workshop

Workshop23rd IEEE European Modeling & Simulation Symposium EMSS 2011
Land/GebietItalien
OrtRoma
Zeitraum12.09.201114.09.2011
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „New Genetic Programming Hypothesis Search Strategies for Improving the Interpretability in Medical Data Mining Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren