Neural Network Based Tumor Marker Prediction

Witold Jacak, Karin Pröll

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

In this paper a system for the prediction of tumor marker values based on standard blood is presented. Several neural networks are used to learn from blood examination measurements and predict tumor markers in case these values are missing. In a post processing step the predicted values are evaluated in a fuzzy logic like style against different hypotheses and the best hypothesis is used to optimize the predicted values and its plausibility. These predicted values can then be used as input for a second system to support decision making in cancer diagnosis. A variety of experiments with tumor marker C153 show that we can get a prediction accuracy of more than 90%. Our experiments are based on hundreds of samples of up to 27 different features (blood parameters) per vector. We try to predict distinct values, classes of values and a combination of classes and values for specific marker types.
OriginalspracheEnglisch
TitelProceedeings of 5th International Conference on Broadband Communication, Information Technology & Biomedical Applications, BroadCom 2010
Herausgeber (Verlag)River Publishers (Series in Information Science)
Seiten1-6
PublikationsstatusVeröffentlicht - 2010
VeranstaltungBroadCom 2010 - 5th International Conference on Broadband Communication, Information Technology & Biomedical Applications - Malaga, Spanien
Dauer: 15 Dez. 201019 Dez. 2010

Konferenz

KonferenzBroadCom 2010 - 5th International Conference on Broadband Communication, Information Technology & Biomedical Applications
Land/GebietSpanien
OrtMalaga
Zeitraum15.12.201019.12.2010

Schlagwörter

  • neural network
  • tumor marker prediction
  • decision support system

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neural Network Based Tumor Marker Prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren