Neural network-based modeling of robot action effects in conceptual state space of real world

Witold Jacak, Stephan Dreiseitl, Robert Muszynski

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

This paper gives the concept of an autonomous robotic agent that is capable of showing both machine learning and reactive behavior. The first methodology is used to collect information about the environment and to plan robot actions based on this information while the robot is performing tasks. Processing and storing information obtained during several task executions is called lifelong learning. Reactive behavior, the second desirable feature of an autonomous robot, is needed to execute the actions in a dynamically changing environment. This paper presents the main components of the machine learning part of the autonomous robotic agent, the conceptual state generalization module that forms conceptual states as categories (clusters) of observation vectors obtained from the sensor system; and the robot behavior effects modeller that calculates the next conceptual state from the current state and an action obtained from the action planner.

OriginalspracheEnglisch
Seiten1149-1156
Seitenumfang8
PublikationsstatusVeröffentlicht - 1996
Extern publiziertJa
VeranstaltungProceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Part 3 (of 3) - Osaka, Jpn
Dauer: 4 Nov. 19968 Nov. 1996

Konferenz

KonferenzProceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. Part 3 (of 3)
OrtOsaka, Jpn
Zeitraum04.11.199608.11.1996

Fingerprint

Untersuchen Sie die Forschungsthemen von „Neural network-based modeling of robot action effects in conceptual state space of real world“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren