Modeling Wildlife Accident Risk with Gaussian Mixture Models

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Traffic accidents involving wildlife pose a widespread problem globally, harming both humans and nature. These incidents often result in heavy vehicle damage, leading to expensive repairs and insurance claims. To mitigate these accidents, efforts are underway to understand wildlife populations near high-risk roads better and implement preventive measures such as visual or audible wildlife warning devices. To prevent wildlife accidents, high-risk areas must be identified first. In this work, we propose a model that predicts dangerous areas based on animal sightings and apply it to two road segments in Austria.
OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2024 - 19th International Conference, 2024, Revised Selected Papers
Redakteure/-innenAlexis Quesada-Arencibia, Michael Affenzeller, Roberto Moreno-Díaz
Seiten43-53
Seitenumfang11
Band15173
DOIs
PublikationsstatusVeröffentlicht - 25 Apr. 2025

Publikationsreihe

NameLecture Notes in Computer Science
Band15173 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modeling Wildlife Accident Risk with Gaussian Mixture Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren