Mining Patterns from Genetic Improvement Experiments

Oliver Krauss, Hanspeter Mössenböck, Michael Affenzeller

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

When conducting genetic improvement experiments, a large amount of individuals (≈ population size ∗ generations) is created and evaluated. The corresponding experiments contain valuable data concerning the fitness of individuals for the defined criteria, such as run-time performance, memory use or robustness. This publication presents an approach to utilize this information in order to identify recurring context independent patterns in abstract syntax trees (ASTs). These patterns can be applied for restricting the search space (in the form of anti-patterns) or for grafting operators in the population. Future work includes an evaluation of this approach, as well as extending it with wildcards and class hierarchies for larger and more generalized patterns.

OriginalspracheEnglisch
TitelProceedings - 2019 IEEE/ACM 6th International Workshop on Genetic Improvement, GI 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten28-29
Seitenumfang2
ISBN (elektronisch)9781728122687
DOIs
PublikationsstatusVeröffentlicht - Mai 2019
Veranstaltung6th IEEE/ACM International Workshop on Genetic Improvement, GI 2019 - Montreal, Kanada
Dauer: 28 Mai 2019 → …

Publikationsreihe

NameProceedings - 2019 IEEE/ACM 6th International Workshop on Genetic Improvement, GI 2019

Konferenz

Konferenz6th IEEE/ACM International Workshop on Genetic Improvement, GI 2019
Land/GebietKanada
OrtMontreal
Zeitraum28.05.2019 → …

Fingerprint

Untersuchen Sie die Forschungsthemen von „Mining Patterns from Genetic Improvement Experiments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren