Mining Attributed Input Grammars and their Applications in Fuzzing

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Undetected errors in software systems are a common cause of vulnerabilities and security holes. Grammar Fuzzing is an effective method for testing these systems, but it has limitations such as lack of knowledge about the semantics of the program and difficulty obtaining grammar for these systems. To address these limitations, we propose an approach to automatically mine grammars, and enhance it with semantic rules and contextual constraints to create attribute grammars. These attribute grammars can then be used for fuzzing. Our preliminary results show that this automated extraction process is feasible, as we successfully applied it to an expression parser and were able to extract an attribute grammar representing the parser's functionality.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE 16th International Conference on Software Testing, Verification and Validation, ICST 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten493-495
Seitenumfang3
ISBN (elektronisch)9781665456661
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung16th IEEE International Conference on Software Testing, Verification and Validation, ICST 2023 - Dublin, Irland
Dauer: 16 Apr. 202320 Apr. 2023

Publikationsreihe

NameProceedings - 2023 IEEE 16th International Conference on Software Testing, Verification and Validation, ICST 2023

Konferenz

Konferenz16th IEEE International Conference on Software Testing, Verification and Validation, ICST 2023
Land/GebietIrland
OrtDublin
Zeitraum16.04.202320.04.2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Mining Attributed Input Grammars and their Applications in Fuzzing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren