Measures for the evaluation and comparison of graphical model structures

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Structure learning is the identification of the structure of graphical models based solely on observational data and is NP-hard. An important component of many structure learning algorithms are heuristics or bounds to reduce the size of the search space. We argue that variable relevance rankings that can be easily calculated for many standard regression models can be used to improve the efficiency of structure learning algorithms. In this contribution, we describe measures that can be used to evaluate the quality of variable relevance rankings, especially the well-known normalized discounted cumulative gain (NDCG). We evaluate and compare different regression methods using the proposed measures and a set of linear and non-linear benchmark problems.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2017 - 16th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Diaz, Alexis Quesada-Arencibia, Franz Pichler
Herausgeber (Verlag)Springer
Seiten283-290
Seitenumfang8
ISBN (Print)9783319747170
DOIs
PublikationsstatusVeröffentlicht - 2018
Veranstaltung16th International Conference on Computer Aided Systems Theory, EUROCAST 2017 - Las Palmas de Gran Canaria, Spanien
Dauer: 19 Feb. 201724 Feb. 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10671 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th International Conference on Computer Aided Systems Theory, EUROCAST 2017
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum19.02.201724.02.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Measures for the evaluation and comparison of graphical model structures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren