Abstract
In this work we discuss a supervised learning approach for identification of frequent itemsets and association rules from transactional data. This task is typically encountered in market basket analysis, where the goal is to find subsets of products that are frequently purchased in combination. In this work we compare the traditional approach and the supervised learning approach to find association rules in a real-world retail data set using two well known algorithm, namely Apriori and PRIM.
Originalsprache | Englisch |
---|---|
Titel | Computer Aided Systems Theory, EUROCAST 2011 - 13th International Conference, Revised Selected Papers |
Seiten | 464-471 |
Seitenumfang | 8 |
Band | 6927 |
Auflage | PART 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2012 |
Veranstaltung | 13th International Conference on Computer Aided Systems Theory, Eurocast 2011 - Las Palmas de Gran Canaria, Spanien Dauer: 6 Feb. 2011 → 11 Feb. 2011 http://www.iuctc.ulpgc.es/spain/eurocast2011/ |
Publikationsreihe
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Nummer | PART 1 |
Band | 6927 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (elektronisch) | 1611-3349 |
Konferenz
Konferenz | 13th International Conference on Computer Aided Systems Theory, Eurocast 2011 |
---|---|
Land/Gebiet | Spanien |
Ort | Las Palmas de Gran Canaria |
Zeitraum | 06.02.2011 → 11.02.2011 |
Internetadresse |