Machine Learning Update Strategies for Real-time Production Environments

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Modern application scenarios in the dynamic industrial, financial, and economic sectors increasingly require quick and agile machine learning solutions. Instead of waiting hours for batch processing systems to deliver results, these systems should ideally adapt and make decisions as soon as new data comes in. As the demand for real-time machine learning solutions using streaming data is steadily increasing, this paper explores a software architecture that efficiently combines the Apache Kafka ecosystem with Microsoft's machine learning framework ML.NET for reliable data processing and model adaptation. The research addresses the complexity of deciding when to retrain these models in an unbounded data stream context. Various update strategies, including online, periodic, and performance-based model training, are evaluated for effectiveness under different conditions. The goal of this paper is to propose a completely autonomous machine learning pipeline that is capable of keeping models updated while, minimizing computational costs required for retraining and ensuring prediction accuracy.
OriginalspracheEnglisch
TitelEurocast 2024
Herausgeber (Verlag)Springer
PublikationsstatusAngenommen/Im Druck - 2024
VeranstaltungEUROCAST 2024: 19th International Conference on Computer Aided Systems Theory - Museo Elder de la Ciencia y la Tecnología, Las Palmas de Gran Canaria, Spanien
Dauer: 25 Feb. 20241 März 2024
https://eurocast2024.fulp.ulpgc.es

Konferenz

KonferenzEUROCAST 2024
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum25.02.202401.03.2024
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning Update Strategies for Real-time Production Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren