Lower Limbs Gesture Recognition Approach to Control a Medical Treatment Bed

Christina Tischler, Klaus Pendl, Erwin Schimbäck, Veronika Putz, Christian Kastl, Thomas Schlechter, Frederick Runte

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Human machine interaction is showing increasing importance in various areas. In this context a gesture control using machine learning algorithms for a contactless control of a therapy table has been identified as interesting application. Predefined lower limb gestures are performed by an operator, classified by a pocket worn tag, and the results are transferred wirelessly to a remote controller. Two algorithms were compared using a k-nearest neighbor (KNN) and a convolutional neural network (CNN), which are responsible for the classification of the gestures. By using the KNN an accuracy in the range of 75%–82% was achieved. Compared to KNN, CNN achieves 89.1% by applying the categorical classifier and 93.7% by applying the binary classifier. Simplification of work and convenience in using the therapy table can be achieved by high accuracy and fast response of the control system.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2022 - 18th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Díaz, Franz Pichler, Alexis Quesada-Arencibia
Herausgeber (Verlag)Springer
Seiten318-326
Seitenumfang9
Band13789 LNCS
ISBN (Print)9783031253119
DOIs
PublikationsstatusVeröffentlicht - 3 März 2023
Veranstaltung18th International Conference on Computer Aided Systems Theory, EUROCAST 2022 - Las Palmas de Gran Canaria, Spanien
Dauer: 20 Feb. 202225 Feb. 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13789 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz18th International Conference on Computer Aided Systems Theory, EUROCAST 2022
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum20.02.202225.02.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lower Limbs Gesture Recognition Approach to Control a Medical Treatment Bed“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren