Location-aware hazardous litter management for smart emergency governance in urban eco-cyber-physical systems

Amirhossein Peyvandi, Babak Majidi, Soodeh Peyvandi, Jagdish Patra, Behzad Moshiri

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)

Abstract

Smart city management is facing a new challenge from littered face masks during COVID-19 pandemic. Addressing the issues of detection and collection of this hazardous waste that is littered in public spaces and outside the controlled environments, usually associated with biomedical waste, is urgent for the safety of the communities around the world. Manual management of this waste is beyond the capabilities of governments worldwide as the geospatial scale of littering is very high and also because this contaminated litter is a health and safety issue for the waste collectors. In this paper, an autonomous biomedical waste management framework that uses edge surveillance and location intelligence for detection of the littered face masks and predictive modelling for emergency response to this problem is proposed. In this research a novel dataset of littered face masks in various conditions and environments is collected. Then, a new deep neural network architecture for rapid detection of discarded face masks on the video surveillance edge nodes is proposed. Furthermore, a location intelligence model for prediction of the areas with higher probability of hazardous litter in the smart city is presented. Experimental results show that the accuracy of the proposed model for detection of littered face masks in various environments is 96%, while the speed of processing is ten times faster than comparable models. The proposed framework can help authorities to plan for timely emergency response to scattering of hazardous material in residential environments.

OriginalspracheEnglisch
Seiten (von - bis)22185-22214
Seitenumfang30
FachzeitschriftMultimedia Tools and Applications
Jahrgang81
Ausgabenummer16
Frühes Online-Datum3 Jän. 2022
DOIs
PublikationsstatusVeröffentlicht - 3 Jän. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Location-aware hazardous litter management for smart emergency governance in urban eco-cyber-physical systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren