Language-Independent Sentiment Analysis with Surrounding Context Extension

Tomas Kincl, Michal Novak, Jiri Pribil, Pavel Strach

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Expressing attitudes and opinions towards various entities (i.e. products, companies, people and events) has become pervasive with the recent proliferation of social media. Monitoring of what customers think is a key task for marketing research and opinion surveys, while measuring customers’ preferences or media monitoring have become a fundamental part of corporate activities. Most experiments on automated sentiment analysis focus on major languages (English, but also Chinese); minor or morphologically rich languages are addressed rather sparsely. Moreover, to improve the performance of machine-learning based classifiers, the models are often complemented with language-dependent components (i.e. sentiment lexicons). Such combined approaches provide a high level of accuracy but are limited to a single language or a single thematic domain. This paper aims to contribute to this field and introduces an experiment utilizing a language– and domain– independent model for sentiment analysis. The model has been previously tested on multiple corpora, providing a trade-off between generality and the classification performance of the model. In this paper, we suggest a further extension of the model utilizing the surrounding context of the classified documents.
OriginalspracheEnglisch
TitelSocial Computing and Social Media - 7th International Conference, SCSM 2015 Held as Part of HCI International 2015, Proceedings
Redakteure/-innenGabriele Meiselwitz
Herausgeber (Verlag)Springer
Seiten158-168
Seitenumfang11
ISBN (Print)978-3-319-20366-9
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung7th International Conference on Social Computing and Social Media - Los Angeles, USA/Vereinigte Staaten
Dauer: 2 Aug. 20157 Aug. 2015

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9182
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz7th International Conference on Social Computing and Social Media
Land/GebietUSA/Vereinigte Staaten
OrtLos Angeles
Zeitraum02.08.201507.08.2015

Schlagwörter

  • Sentiment analysis
  • cross-domain
  • cross-language
  • surrounding context

Fingerprint

Untersuchen Sie die Forschungsthemen von „Language-Independent Sentiment Analysis with Surrounding Context Extension“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren