Knowledge discovery through symbolic regression with HeuristicLab

Gabriel Kronberger, Stefan Wagner, Michael Kommenda, Andreas Beham, Andreas Scheibenpflug, Michael Affenzeller

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

This contribution describes how symbolic regression can be used for knowledge discovery with the open-source software HeuristicLab. HeuristicLab includes a large set of algorithms and problems for combinatorial optimization and for regression and classification, including symbolic regression with genetic programming. It provides a rich GUI to analyze and compare algorithms and identified models. This contribution mainly focuses on specific aspects of symbolic regression that are unique to HeuristicLab, in particular, the identification of relevant variables and model simplification.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Proceedings
Seiten824-827
Seitenumfang4
Band7524
AuflagePART 2
DOIs
PublikationsstatusVeröffentlicht - 2012
Veranstaltung2012 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2012 - Bristol, Großbritannien/Vereinigtes Königreich
Dauer: 24 Sep. 201228 Sep. 2012

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 2
Band7524 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz2012 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML-PKDD 2012
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtBristol
Zeitraum24.09.201228.09.2012

Fingerprint

Untersuchen Sie die Forschungsthemen von „Knowledge discovery through symbolic regression with HeuristicLab“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren