Induction Motor Stator Fault Detection by a Condition Monitoring Scheme Based on Parameter Estimation Algorithms

Fang Duan*, Rastko Živanović

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

20 Zitate (Scopus)

Abstract

This article presents a simple, low-cost, and effective method for the early diagnosis of stator short-circuit faults. The approach relies on the combination of an induction motor mathematical model and parameter estimation algorithm. The kernel of the method is the efficient search for the characteristic parameters that indicate stator short-circuit faults. However, the non-linearity of a machine model may imply multiple local minima of an objective function implemented in the estimation algorithm. Taking this into consideration, the suitability of two industry-proven optimization algorithms (pattern search algorithm and genetic algorithm) as applied in the proposed condition monitoring method was investigated. Experimental results show that the proposed diagnosis method is capable of detecting stator short-circuit faults and estimating level and location of faults. The study also indicates that the proposed method is robust to motor parameters offset and unbalanced voltage supply. Application of the pattern search algorithm is suitable for a continuous monitoring system, where the previous result can be used as starting point of the new search. The genetic algorithm requires longer computation time and is suitable for the offline diagnostic system. It is not sensitive to the starting point, and achieving global solution is guaranteed.

OriginalspracheEnglisch
Seiten (von - bis)1138-1148
Seitenumfang11
FachzeitschriftElectric Power Components and Systems
Jahrgang44
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 14 Juni 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Induction Motor Stator Fault Detection by a Condition Monitoring Scheme Based on Parameter Estimation Algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren