IMU-based solution for automatic detection and classification of exercises in the fitness scenario

Claudio Crema, Alessandro Depari, Alessandra Flammini, Emiliano Sisinni, Thomas Haslwanter, Stefan Salzmann

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

20 Zitate (Scopus)

Abstract

Causal relationship between physical activity and prevention of several diseases has been known for some time. Recently, attempts to quantify dose-response relationship between physical activity and health show that automatic tracking and quantification of the exercise efforts not only help in motivating people but improve health conditions as well. However, no commercial devices are available for weight training and calisthenics. This work tries to overcome this limit, exploiting machine learning technique (particularly Linear Discriminant Analysis, LDA) for analyzing data coming from wearable inertial measurement units, (IMUs) and classifying/counting such exercises. Computational requirements are compatible with embedded implementation and reported results confirm the feasibility of the proposed approach, offering an average accuracy in the detection of exercises on the order of 85%.

OriginalspracheEnglisch
TitelSAS 2017 - 2017 IEEE Sensors Applications Symposium, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781509032020
DOIs
PublikationsstatusVeröffentlicht - 6 Apr 2017
Veranstaltung12th IEEE Sensors Applications Symposium, SAS 2017 - Glassboro, USA/Vereinigte Staaten
Dauer: 13 Mär 201715 Mär 2017

Publikationsreihe

NameSAS 2017 - 2017 IEEE Sensors Applications Symposium, Proceedings

Konferenz

Konferenz12th IEEE Sensors Applications Symposium, SAS 2017
Land/GebietUSA/Vereinigte Staaten
OrtGlassboro
Zeitraum13.03.201715.03.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „IMU-based solution for automatic detection and classification of exercises in the fitness scenario“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren