Improving language-dependent named entity detection

Gerald Petz, Werner Wetzlinger, Dietmar Nedbal

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Named Entity Recognition (NER) and Named Entity Linking (NEL) are two research areas that have shown big advancements in recent years. The majority of this research is based on the English language. Hence, some of these improvements are language-dependent and do not necessarily lead to better results when applied to other languages. Therefore, this paper discusses TOMO, an approach to language-aware named entity detection and evaluates it for the German language. This also required the development of a German gold standard dataset, which was based on the English dataset used by the OKE 2016 challenge. An evaluation of the named entity detection task using the web-based platform GERBIL was undertaken and results show that our approach produced higher F1 values than the other annotators did. This indicates that language-dependent features do improve the overall quality of the spotter.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Extraction - 1st IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference, CD-MAKE 2017, Proceedings
Redakteure/-innenA. Min Tjoa, Andreas Holzinger, Kieseberg Peter Kieseberg, Edgar Weippl
Herausgeber (Verlag)Springer
Seiten330-345
Seitenumfang16
ISBN (Print)9783319668079
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung1st IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference on Machine Learning and Knowledge Extraction, CD-MAKE 2017 - Reggio, Italien
Dauer: 29 Aug. 20171 Sep. 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10410 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference on Machine Learning and Knowledge Extraction, CD-MAKE 2017
Land/GebietItalien
OrtReggio
Zeitraum29.08.201701.09.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Improving language-dependent named entity detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren