Identifying tandem mass spectra of phosphorylated peptides before database search using machine-learning

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Identification of post-translational modifications (PTMs), for example phosphorylation, is of high interest in proteomics research since modified proteins are often important for biological functionality. For the identification of modified peptides during tandem mass spectrometry, database search engines typically consider the selected PTMs for any of the spectra in a sample. Selecting many different PTMs together results in drastically increased search space, leading to longer search times and more false positive peptide identifications. To counteract this, we propose the use of a machine-learning-trained model that can reliably classify those spectra which are highly likely to represent phosphorylated peptides before database search. By limiting the PTM search to only these spectra processing times can be improved.
OriginalspracheEnglisch
TitelProceedings of the Austrian Proteomics Research Symposium (APRS2016)
PublikationsstatusVeröffentlicht - 2016
VeranstaltungAustrian Proteomics Research Symposium (APRS2016) - Wien, Österreich
Dauer: 5 Sep. 20167 Sep. 2016

Workshop

WorkshopAustrian Proteomics Research Symposium (APRS2016)
Land/GebietÖsterreich
OrtWien
Zeitraum05.09.201607.09.2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identifying tandem mass spectra of phosphorylated peptides before database search using machine-learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren