Identification of Similarities and Clusters of Bread Baking Recipes Based on Data of Ingredients

Stefan Anlauf, Melanie Lasslberger, Rudolf Grassmann, Johannes Himmelbauer, Stephan Winkler

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

We define the similarity of bakery recipes and identify groups of similar recipes using different clustering algorithms. Our analyses are based on the relative amounts of ingredients included in the recipes. We use different clustering algorithms to find the optimal clusters for all recipes, namely k-means, k-medoid, and hierarchical clustering. In addition to standard similarity measures we define a similarity measure using the logarithm of the original data to reduce the impact of raw materials that are used in large quantities. Clustering recipes based on their ingredients can improve the search for similar recipes and therefore help with the time-consuming process of developing new recipes. Using the k-medoid method, we can separate 1271 recipes into six different clusters. We visualize our results via dendrograms that represent the hierarchical separation of the recipes into individual groups and sub-groups.

OriginalspracheEnglisch
Titel8th International Food Operations and Processing Simulation Workshop, FoodOPS 2022
Redakteure/-innenAgostino G. Bruzzone, Francesco Longo, Giuseppe Vignali
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
ISBN (elektronisch)9788885741850
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung8th International Food Operations and Processing Simulation Workshop, FoodOPS 2022 - Rome, Italien
Dauer: 19 Sep. 202221 Sep. 2022

Publikationsreihe

Name8th International Food Operations and Processing Simulation Workshop, FoodOPS 2022

Konferenz

Konferenz8th International Food Operations and Processing Simulation Workshop, FoodOPS 2022
Land/GebietItalien
OrtRome
Zeitraum19.09.202221.09.2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identification of Similarities and Clusters of Bread Baking Recipes Based on Data of Ingredients“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren