Identification of Models for Glucose Blood Values in Diabetics by Grammatical Evolution

J. Ignacio Hidalgo, J. Manuel Colmenar, J. Manuel Velasco, Gabriel Kronberger, Stephan Winkler, Oscar Garnica, Juan Lanchares

Publikation: Beitrag in Buch/Bericht/TagungsbandKapitel

4 Zitate (Scopus)

Abstract

One the most relevant application areas of artificial intelligence and machine learning in general is medical research. We here focus on research dedicated to diabetes, a disease that affects a high percentage of the population worldwide and that is an increasing threat due to the advance of the sedentary life in the big cities. Most recent studies estimate that it affects about more than 410 million people in the world. In this chapter we discuss a set of techniques based on GE to obtain mathematical models of the evolution of blood glucose along the time. These models help diabetic patients to improve the control of blood sugar levels and thus, improve their quality of life. We summarize some recent works on data preprocessing and design of grammars that have proven to be valuable in the identification of prediction models for type 1 diabetics. Furthermore, we explain the data augmentation method which is used to sample new data sets.

OriginalspracheEnglisch
TitelHandbook of Grammatical Evolution
Herausgeber (Verlag)Springer
Seiten367-393
Seitenumfang27
ISBN (elektronisch)9783319787176
ISBN (Print)978-3-319-78716-9
DOIs
PublikationsstatusVeröffentlicht - 1 Jän. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identification of Models for Glucose Blood Values in Diabetics by Grammatical Evolution“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren