Identification of Dynamical Systems Using Symbolic Regression

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)


We describe a method for the identification of models for dynamical systems from observational data. The method is based on the concept of symbolic regression and uses genetic programming to evolve a system of ordinary differential equations (ODE). The novelty is that we add a step of gradient-based optimization of the ODE parameters. For this we calculate the sensitivities of the solution to the initial value problem (IVP) using automatic differentiation. The proposed approach is tested on a set of 19 problem instances taken from the literature which includes datasets from simulated systems as well as datasets captured from mechanical systems. We find that gradient-based optimization of parameters improves predictive accuracy of the models. The best results are obtained when we first fit the individual equations to the numeric differences and then subsequently fine-tune the identified parameter values by fitting the IVP solution to the observed variable values.

TitelComputer Aided Systems Theory – EUROCAST 2019 - 17th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Díaz, Alexis Quesada-Arencibia, Franz Pichler
Herausgeber (Verlag)Springer
ISBN (Print)9783030450922
PublikationsstatusVeröffentlicht - 2020
Veranstaltung17th International Conference on Computer Aided Systems Theory, EUROCAST 2019 - Las Palmas de Gran Canaria, Spanien
Dauer: 17 Feb. 201922 Feb. 2019


NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12013 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349


Konferenz17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
OrtLas Palmas de Gran Canaria


Untersuchen Sie die Forschungsthemen von „Identification of Dynamical Systems Using Symbolic Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.