Identification of a nonlinear spring and damper characteristics of a motorcycle suspension using test ride data

Thomas Lauß, Dominik Sterl, Stefan Oberpeilsteiner, Wolfgang Steiner

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitrag

Abstract

During test rides of motorcycles modifications are made to the suspension. In order to quantify those changes, the nonlinear spring and damper characteristics must be determined. This is usually done on a test bench. However, measurements on a test bench are closely related to high costs and high time exposure. Hence, a parameter identification after a test run, formulated as an optimization task, seems to be an auspicious approach. For this purpose a cost function is defined, which is minimized by considering the dynamics of the system. The strength of the contribution is the efficient gradient computation using the adjoint variable approach. In order to approximate the nonlinear spring and damper characteristics cubic splines are used. The values of the spline functions at specified grid points (knots) are adjusted such that the deviation between simulation and measurement is minimal.
Titel in ÜbersetzungIdentification of a nonlinear spring and damper characteristics of a motorcycle suspension using test ride data
OriginalspracheDeutsch
Titel89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)
DOIs
PublikationsstatusVeröffentlicht - 2018
Veranstaltung89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) - München, Deutschland
Dauer: 19 Mär 201823 Mär 2018
https://jahrestagung.gamm-ev.de/

Konferenz

Konferenz89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)
Land/GebietDeutschland
OrtMünchen
Zeitraum19.03.201823.03.2018
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Identification of a nonlinear spring and damper characteristics of a motorcycle suspension using test ride data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren