Heterogeneous versus Homogeneous Machine Learning Ensembles

Aleksandra Petrakova, Michael Affenzeller, Galina Merkuryeva

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

The research demonstrates efficiency of the heterogeneous model ensemble application for a cancer diagnostic procedure. Machine learning methods used for the ensemble model training are neural networks, random forest, support vector machine and offspring selection genetic algorithm. Training of models and the ensemble design is performed by means of HeuristicLab software. The data used in the research have been provided by the General Hospital of Linz, Austria.
OriginalspracheEnglisch
Seiten (von - bis)135-142
FachzeitschriftInformation Technology and Management Science
Jahrgang18
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Dez. 2015

Schlagwörter

  • Classification task
  • ensemble modelling
  • machine learning
  • majority voting

Fingerprint

Untersuchen Sie die Forschungsthemen von „Heterogeneous versus Homogeneous Machine Learning Ensembles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren