Heat treatment process parameter estimation using heuristic optimization algorithms

Michael Kommenda, Bogdan Burlacu, Reinhard Holecek, Andreas Gebeshuber, Michael Affenzeller

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

We present an approach for estimating control parameters of a plasma nitriding process, so that materials with desired product qualities are created. We achieve this by solving the inverse optimization problem of finding the best combination of parameters using a real-vector optimization algorithm, such that multiple regression models evaluated with a concrete parameter combination predict the desired product qualities simultaneously. The results obtained on real-world data of the nitriding process demonstrate the effectiveness of the presented methodology. Out of various regression and optimization algorithms, the combination of symbolic regression for creating prediction models and covariant matrix adaptation evolution strategies for estimating the process parameters works particularly well. We discuss the influence of the concrete regression algorithm used to create the prediction models on the parameter estimations and the advantages, as well as the limitations and pitfalls of the methodology.

OriginalspracheEnglisch
Titel27th European Modeling and Simulation Symposium, EMSS 2015
Redakteure/-innenMichael Affenzeller, Francesco Longo, Lin Zhang, Agostino G. Bruzzone, Yuri Merkuryev, Emilio Jimenez
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
Seiten222-227
Seitenumfang6
ISBN (elektronisch)9788897999485
PublikationsstatusVeröffentlicht - 2015
Veranstaltung27th European Modeling and Simulation Symposium, EMSS 2015 - Bergeggi, Italien
Dauer: 21 Sep. 201523 Sep. 2015

Publikationsreihe

Name27th European Modeling and Simulation Symposium, EMSS 2015

Konferenz

Konferenz27th European Modeling and Simulation Symposium, EMSS 2015
Land/GebietItalien
OrtBergeggi
Zeitraum21.09.201523.09.2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Heat treatment process parameter estimation using heuristic optimization algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren