Generic hardness estimation using fitness and parameter landscapes applied to Robust Taboo Search and the quadratic assignment problem

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

Fitness landscape analysis methods have become an increasingly popular topic for research. The future application of these methods to metaheuristics can yield advanced self-adaptive metaheuristics and knowledge bases that can take the role of expert systems in the field of optimization. One important feature of such an expert system would be the prediction of algorithm effort on a certain instance. Estimating whether a certain algorithm is able to tackle the problem adequately or not is a valuable piece of information that currently only an experienced human expert can give. The ability to generate such an advice automatically is, therefore, an important milestone. While fitness landscape analysis methods have been developed for exactly this purpose, it has been shown in the past that single-value analyses have limited applicability. Here, a general method for extracting fitness landscape features will be shown in combination with regression models that indicate a strong correlation between the actual and the predicted effort. Significant potential to increase the prediction quality arises when combining several measures each derived from several different sampling trajectories.

OriginalspracheEnglisch
TitelGECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion
Herausgeber (Verlag)ACM Sigevo
Seiten393-400
Seitenumfang8
ISBN (Print)9781450311786
DOIs
PublikationsstatusVeröffentlicht - 2012
Veranstaltung14th International Conference on Genetic and Evolutionary Computation, GECCO'12 - Philadelphia, PA, USA/Vereinigte Staaten
Dauer: 7 Juli 201211 Juli 2012

Publikationsreihe

NameGECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion

Konferenz

Konferenz14th International Conference on Genetic and Evolutionary Computation, GECCO'12
Land/GebietUSA/Vereinigte Staaten
OrtPhiladelphia, PA
Zeitraum07.07.201211.07.2012

Fingerprint

Untersuchen Sie die Forschungsthemen von „Generic hardness estimation using fitness and parameter landscapes applied to Robust Taboo Search and the quadratic assignment problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren