GECCO’2022 Symbolic Regression Competition: Post-analysis of the Operon Framework

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Operon is a C++ framework for symbolic regression with the ability to perform local search by optimizing model coefficients using the Levenberg-Marquardt algorithm. This enhancement has proven to be effective in a variety of regression tasks. Operon took part in the Interpretable Symbolic Regression for Data Science hosted at the 2022 Genetic and Evolutionary Computation Conference, where it ranked overall 4th based on criteria of accuracy, simplicity as well as task-specific goals. Although accurate, the returned models were exceedingly complex and ranked poorly in terms of simplicity. In this paper, we investigate the application of the Minimum Description Length (MDL) principle for selecting models with a better compromise between accuracy and complexity from the final Pareto front returned by the algorithm. A new experiment on the synthetic track of the competition highlights the critical role played by model selection in algorithm performance. The MDL-enhanced approach obtains the best overall score and demonstrates excellent results on all synthetic tracks.

OriginalspracheEnglisch
TitelGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten2412-2419
Seitenumfang8
ISBN (elektronisch)9798400701207
DOIs
PublikationsstatusVeröffentlicht - 15 Juli 2023
Veranstaltung2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion - Lisbon, Portugal
Dauer: 15 Juli 202319 Juli 2023

Publikationsreihe

NameGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion

Konferenz

Konferenz2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion
Land/GebietPortugal
OrtLisbon
Zeitraum15.07.202319.07.2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „GECCO’2022 Symbolic Regression Competition: Post-analysis of the Operon Framework“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren