Fuzzy modeling with decision trees

Mario Drobics, Ulrich Bodenhofer

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

14 Zitate (Scopus)

Abstract

Decision trees are a well-known and widely used method for classification problems. For handling numerical attributes or even for numerical prediction, traditional decision trees based on crisp predicates are not suitable. Through the usage of fuzzy predicates for different types of attributes, not only the expressive power of decision trees can be extended, but it also allows to create models for numerical attributes in a very natural manner. In this paper, we will present a logical foundation for inductive learning of fuzzy decision trees. We further show how fuzzy logical inference methods can be applied with fuzzy decision trees to provide continuous output. Extending the underlying logical language with ordering-based fuzzy predicates enables us to generate not only more compact, but also more accurate, decision trees. These explanations are complemented by remarks on how the obtained results can be interpreted and altered by the user, to provide a theoretically founded method for interactive data analysis.

OriginalspracheEnglisch
Seiten (von - bis)611-616
Seitenumfang6
FachzeitschriftProceedings of the IEEE International Conference on Systems, Man and Cybernetics
Jahrgang4
PublikationsstatusVeröffentlicht - 2002
Extern publiziertJa
Veranstaltung2002 IEEE International Conference on Systems, Man and Cybernetics - Yasmine Hammamet, Tunesien
Dauer: 6 Okt. 20029 Okt. 2002

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fuzzy modeling with decision trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren