Flexible camera setup for visual based registration on 2D interaction surface with undefined geometry using neural network

Ary Setijadi Prihatmanto, Michael Haller, Roland Wagner

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Camera setup, calibration and visual based registration of Augmented Reality (AR) based tabletop setups can be a really complicated and time-intensive task. Homography is often used liberally despite its assumption for planar surfaces, where the mapping from the camera to the table can be expressed by a simple projective homography. However, this approach often fails in curved and non-planar surface setups. In this paper, we propose a technique that approximates the values and reduces the tracking error-values by the usage of a neural network function. The final result gives a uniform representation of the camera against combinations of camera parameters that will help in the multi-camera setup. We present the advantages with demonstration applications, where a laser pointer spot and a light from the lamp will be tracked in non planar surface.

OriginalspracheEnglisch
TitelAdvances in Artificial Reality and Tele-Existence - 16th International Conference on Artificial Reality and Telexistence, ICAT 2006, Proceedings
Seiten948-959
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung16th International Conference on Artificial Reality and Telexistence, ICAT 2006 - Hangzhou, China
Dauer: 29 Nov. 20061 Dez. 2006

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4282 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th International Conference on Artificial Reality and Telexistence, ICAT 2006
Land/GebietChina
OrtHangzhou
Zeitraum29.11.200601.12.2006

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flexible camera setup for visual based registration on 2D interaction surface with undefined geometry using neural network“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren