Fine Grained Population Diversity Analysis for Parallel Genetic Programming

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

In this paper we describe a formalism for estimating the structural similarity of formulas that are evolved by parallel genetic programming (GP) based identification processes. This similarity measurement can be used for measuring the genetic diversity among GP populations and, in the case of multi-population GP, the genetic diversity among sets of GP populations: The higher the average similarity among solutions becomes, the lower is the genetic diversity. Using this definition of genetic diversity for GP we test several different GP based system identification algorithms for analyzing real world measurements of a BMW Diesel engine as well as medical benchmark data taken from the UCI machine learning repository

OriginalspracheEnglisch
TitelIPDPS 2009 - Proceedings of the 2009 IEEE International Parallel and Distributed Processing Symposium
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2009
VeranstaltungIEEE International Parallel & Distributed Processing Symposium IPDPS 2009 - Roma, Italien
Dauer: 25 Mai 200929 Mai 2009

Publikationsreihe

NameIPDPS 2009 - Proceedings of the 2009 IEEE International Parallel and Distributed Processing Symposium

Konferenz

KonferenzIEEE International Parallel & Distributed Processing Symposium IPDPS 2009
Land/GebietItalien
OrtRoma
Zeitraum25.05.200929.05.2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fine Grained Population Diversity Analysis for Parallel Genetic Programming“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren