Feature selection for unsupervised learning via comparison of distance matrices

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Feature selection for unsupervised learning is generally harder than for supervised learning, because the former lacks the class information of the latter, and thus an obvious way by which to measure the quality of a feature subset. In this paper, we propose a new method based on representing data sets by their distance matrices, and judging feature combinations by how well the distance matrix using only these features resembles the distance matrix of the full data set. Using articial data for which the relevant features were known, we observed that the results depend on the data dimensionality, the fraction of relevant features, the overlap between clusters in the relevant feature subspaces, and how to measure the similarity of distance matrices. Our method consistently achieved higher than 80% detection rates of relevant features for a wide variety of experimental configurations.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory, EUROCAST 2013 - 14th International Conference, Revised Selected Papers
Herausgeber (Verlag)Springer
Seiten203-210
Seitenumfang8
AuflagePART 1
ISBN (Print)9783642538551
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung14th International Conference on Computer Aided Systems Theory, Eurocast 2013 - Las Palmas de Gran Canaria, Spanien
Dauer: 10 Feb. 201315 Feb. 2013

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band8111 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Conference on Computer Aided Systems Theory, Eurocast 2013
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum10.02.201315.02.2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „Feature selection for unsupervised learning via comparison of distance matrices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren