Fast fully-automated model-driven liver segmentation utilizing slicewise applied levelsets on large CT data

Gerald Adam Zwettler, Werner Backfrieder, Roland Swoboda, Franz Pfeifer

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

Modern Computed Tomography scans are acquired down to a slice thickness of 0.5 mm thus yielding a huge number of 2D slices to be examined by the physician. Hence the need for automated computer assisted diagnostics, e.g. in the field of abdominal scans for liver tumor diagnostics and surgery planning, arises. In this work a fully-automated algorithm for robust and accurate segmentation of the liver parenchyma, a prerequisite for liver lobe classification and resection planning, is presented. A first estimate for liver segmentation is achieved by applying a normalized liver model to the CT data. Based on this pre-segmentation parameters for level set segmentation on a slice-by-slice strategy are assessed, thus enabling a fully-automated segmentation of the liver parenchyma. The slice-by-slice level set propagation utilizes fast-marching and threshold level set implementations.

OriginalspracheEnglisch
TitelProceedings
Herausgeber (Verlag)DIPTEM University of Genova
Seiten161-166
PublikationsstatusVeröffentlicht - 2009
Veranstaltung21st European Modeling and Simulation Symposium, EMSS 2009 - Puerto de la Cruz, Spanien
Dauer: 23 Sep. 200925 Sep. 2009

Konferenz

Konferenz21st European Modeling and Simulation Symposium, EMSS 2009
Land/GebietSpanien
OrtPuerto de la Cruz
Zeitraum23.09.200925.09.2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast fully-automated model-driven liver segmentation utilizing slicewise applied levelsets on large CT data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren