Extreme Sparse X-ray Computed Laminography Via Convolutional Neural Networks

Luis F.Alves Pereira, Jan De Beenhouwer, Johann Kastner, Jan Sijbers

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

X-ray Computed Laminography (CL) is a well-known computed tomography technique to image the internal structure of flat objects. High-quality CL imaging requires, however, a large number of X-ray projections, resulting in long acquisition times. Reducing the number of acquired projections allows to speed up the acquisition process but decreases the quality of the reconstructed images. In this work, we investigate the use of Convolutional Neural Networks for processing volumes reconstructed from only four X-ray projections acquired at an inline CL scanning setup.

OriginalspracheEnglisch
TitelProceedings - IEEE 32nd International Conference on Tools with Artificial Intelligence, ICTAI 2020
Redakteure/-innenMiltos Alamaniotis, Shimei Pan
Herausgeber (Verlag)IEEE Computer Society
Seiten612-616
Seitenumfang5
ISBN (elektronisch)9781728192284
DOIs
PublikationsstatusVeröffentlicht - Nov. 2020
Veranstaltung32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020 - Virtual, Baltimore, USA/Vereinigte Staaten
Dauer: 9 Nov. 202011 Nov. 2020

Publikationsreihe

NameProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Band2020-November
ISSN (Print)1082-3409

Konferenz

Konferenz32nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2020
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Baltimore
Zeitraum09.11.202011.11.2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Extreme Sparse X-ray Computed Laminography Via Convolutional Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren