Exploratory Factor Analysis Revisited: How Robust Methods Support the Detection of Hidden Multivariate Data Structures in IS Research

Horst Treiblmaier, Peter Filzmoser

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

135 Zitate (Scopus)

Abstract

Exploratory factor analysis is commonly used in IS research to detect multivariate data structures. Frequently, the method is blindly applied without checking if the data fulfill the requirements of the method. We investigated the influence of sample size, data transformation, factor extraction method, rotation, and number of factors on the outcome. We compared classical exploratory factor analysis with a robust counterpart which is less influenced by data outliers and data heterogeneities. Our analyses revealed that robust exploratory factor analysis is more stable than the classical method.

OriginalspracheEnglisch
Seiten (von - bis)197-207
Seitenumfang11
FachzeitschriftINFORMATION & MANAGEMENT
Jahrgang47
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Mai 2010

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exploratory Factor Analysis Revisited: How Robust Methods Support the Detection of Hidden Multivariate Data Structures in IS Research“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren