Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant

Kaifeng Yang, Daniel Gaida, Thomas Back, Michael Emmerich

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

This paper presents and analyses an engineered expected hypervolume improvement (EHVI) algorithm for solving the problem of PID parameter tuning and the optimization problem of controlling the substrate feed of a biogas plant. The EHVI is the expected value of the increment of the hypervolume indicator given a Pareto front approximation and a predictive multivariate Gaussian distribution of a new point. To solve this problem, S-metric selection-based efficient global optimization (SMS-EGO), EHVI based efficient global optimization (EHVIEGO) and SMS-EMOA are used and compared in both the PID parameter tuning problem and for biogas plant feed optimization. The results of the experiments show that surrogate model based algorithms perform better than SMS-EMOA, and the performance of EHVI-EGO is slightly better than SMS-EGO.

OriginalspracheEnglisch
Titel2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1934-1942
Seitenumfang9
ISBN (elektronisch)9781479974924
DOIs
PublikationsstatusVeröffentlicht - 10 Sep. 2015
VeranstaltungIEEE Congress on Evolutionary Computation, CEC 2015 - Sendai, Japan
Dauer: 25 Mai 201528 Mai 2015

Publikationsreihe

Name2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings

Konferenz

KonferenzIEEE Congress on Evolutionary Computation, CEC 2015
Land/GebietJapan
OrtSendai
Zeitraum25.05.201528.05.2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren