Abstract
This paper presents an evolutionary approach to procedural content generation of 2D maps for computer games. To provide better adaptability to the map designer’s vision, user preference is incorporated to guide the algorithm. A cooperative method utilizes novelty search as a source of diverse solutions, which are then further optimized by multiple, subsequent genetic algorithms. We compare the results to a second approach based on multi-objective optimization, which takes the two conflicting goals of optimizing towards user preference and finding novel solutions as objective functions to build a Pareto front of maps.
Originalsprache | Englisch |
---|---|
Titel | GECCO 2016 Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Conference |
Redakteure/-innen | Tobias Friedrich |
Herausgeber (Verlag) | ACM Sigevo |
Seiten | 39-40 |
Seitenumfang | 2 |
ISBN (elektronisch) | 9781450343237 |
ISBN (Print) | 978-1-4503-4323-7 |
DOIs | |
Publikationsstatus | Veröffentlicht - 20 Juli 2016 |
Veranstaltung | Genetic and Evolutionary Computation Conference (GECCO 2016) - Denver, Colorado, USA/Vereinigte Staaten Dauer: 20 Juli 2016 → 24 Juli 2016 http://gecco-2016.sigevo.org/ |
Publikationsreihe
Name | GECCO 2016 Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Conference |
---|
Konferenz
Konferenz | Genetic and Evolutionary Computation Conference (GECCO 2016) |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Ort | Denver, Colorado |
Zeitraum | 20.07.2016 → 24.07.2016 |
Internetadresse |
Schlagwörter
- Procedural Content Generation
- Search-based Procedural Content Generation
- Novelty Search
- Genetic Algorithm
- HeuristicLab