Evolutionary Optimization of Multi-Agent Control Strategies for Electric Vehicle Charging

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

While an increasing share of intermittent and non-dispatchable renewable energy plants cause probabilistic behavior at the power grids' supply side, the expected penetration of electric mobility at the demand side offers the opportunity of controllable load. Their optimal coordination is one major concern for future smart grids. Therefore, a multi-agent system will be proposed where each electric vehicle (agent) acts in response to dynamic conditions in its environment according to a given strategy. Optimizing these strategies will be the core of this paper, while evolutionary computation will be used for optimization. Here, simulation models will be applied for problem representation and solution evaluation. Thus, simulation allows modeling of complex as well as probabilistic systems, necessary for the herein tackled probem. In the end, the optimized strategies determine electric vehicles' charging behavior such that end-users' energy demand is satisfied and secure power grid operation is guaranteed throughout the considered grid using power from renewable plants. For solution representation, two different approaches will be compared concerning reachable solution quality as well as problem-specific metrics.

OriginalspracheEnglisch
TitelGECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion
Herausgeber (Verlag)ACM Sigevo
Seiten3-10
Seitenumfang8
ISBN (Print)978-1-4503-1178-6
DOIs
PublikationsstatusVeröffentlicht - 2012
VeranstaltungGenetic and Evolutionary Computation Conference GECCO 2012 - Philadelphia, USA/Vereinigte Staaten
Dauer: 7 Juli 201211 Juli 2012
http://www.sigevo.org/gecco-2012/

Publikationsreihe

NameGECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Companion

Konferenz

KonferenzGenetic and Evolutionary Computation Conference GECCO 2012
Land/GebietUSA/Vereinigte Staaten
OrtPhiladelphia
Zeitraum07.07.201211.07.2012
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evolutionary Optimization of Multi-Agent Control Strategies for Electric Vehicle Charging“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren