Evolutionary Hyperparameter Tuning in ML.NET

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

Microsoft's ML.NET has proven to be a solid machine learning framework that is designed to reliably tackle common data science problem tasks. Since its release in 2018, this software library has enjoyed regular updates, performance improvements and a constantly expanding range of functionality. A relatively new extension is the Model Builder API (Microsoft AutoML) that strives to automatically train models by utilizing a variety of different hyperparameter tuning algorithms. In contrast to other frameworks for automated machine learning, among the provided mechanisms, evolutionary approaches like genetic algorithms or evolution strategies cannot be found, although they might have the potential to evolve optimal parameter configurations over time. Therefore, the aim of this paper is to extend Microsoft's AutoML API with evolutionary hyperparameter tuners and benchmarking them with the already existing algorithms based on different datasets.
OriginalspracheDeutsch (Österreich)
Titel36th European Modeling and Simulation Symposium, EMSS 2024
Redakteure/-innenMichael Affenzeller, Agostino G. Bruzzone, Emilio Jimenez, Francesco Longo, Antonella Petrillo
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
ISBN (elektronisch)979-12-81988-02-6
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung36th European Modeling and Simulation Symposium, EMSS 2024 - Santa Cruz de Tenerife, Tenerife, Spanien
Dauer: 18 Okt. 202320 Okt. 2023
https://www.msc-les.org/emss2024/

Publikationsreihe

NameEuropean Modeling and Simulation Symposium, EMSS
Band2024-September
ISSN (elektronisch)2724-0029

Konferenz

Konferenz36th European Modeling and Simulation Symposium, EMSS 2024
Land/GebietSpanien
OrtTenerife
Zeitraum18.10.202320.10.2023
Internetadresse

Zitieren