Evolution of Covariance Functions for Gaussian Process Regression using Genetic Programming

Gabriel Kronberger, Michael Kommenda

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

In this contribution we describe an approach to evolve composite covariance functions for Gaussian processes using genetic programming. A critical aspect of Gaussian processes and similar kernel-based models such as SVM is, that the covariance function should be adapted to the modeled data. Frequently, the squared exponential covariance function is used as a default. However, this can lead to a misspecified model, which does not fit the data well. In the proposed approach we use a grammar for the composition of covariance functions and genetic programming to search over the space of sentences that can be derived from the grammar. We tested the proposed approach on synthetic data from two-dimensional test functions, and on the Mauna Loa CO 2 time series. The results show, that our approach is feasible, finding covariance functions that perform much better than a default covariance function. For the CO 2 data set a composite covariance function is found, that matches the performance of a hand-tuned covariance function.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory, EUROCAST 2013 - 14th International Conference, Revised Selected Papers
Herausgeber (Verlag)Springer
Seiten308-315
Seitenumfang8
AuflagePART 1
ISBN (Print)978-3-642-53855-1
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung14th International Conference on Computer Aided Systems Theory, Eurocast 2013 - Las Palmas de Gran Canaria, Spanien
Dauer: 10 Feb. 201315 Feb. 2013

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NummerPART 1
Band8111 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz14th International Conference on Computer Aided Systems Theory, Eurocast 2013
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum10.02.201315.02.2013

Schlagwörter

  • Gaussian Process
  • Genetic Programming
  • Structure Identification

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evolution of Covariance Functions for Gaussian Process Regression using Genetic Programming“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren