Evaluation of a large-scale biomedical data annotation initiative

Ronilda Lacson, Erik Pitzer, Christian Hinske, Pedro Galante, Lucila Ohno-Machado

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)

Abstract

Background: This study describes a large-scale manual re-annotation of data samples in the Gene Expression Omnibus (GEO), using variables and values derived from the National Cancer Institute thesaurus. A framework is described for creating an annotation scheme for various diseases that is flexible, comprehensive, and scalable. The annotation structure is evaluated by measuring coverage and agreement between annotators. Results: There were 12,500 samples annotated with approximately 30 variables, in each of six disease categories - breast cancer, colon cancer, inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Type 1 diabetes mellitus (DM). The annotators provided excellent variable coverage, with known values for over 98% of three critical variables: disease state, tissue, and sample type. There was 89% strict inter-annotator agreement and 92% agreement when using semantic and partial similarity measures. Conclusion: We show that it is possible to perform manual re-annotation of a large repository in a reliable manner.

OriginalspracheEnglisch
AufsatznummerS10
Seiten (von - bis)S10
Seitenumfang6
FachzeitschriftBMC Bioinformatics
Jahrgang10
AusgabenummerSUPPL. 9
DOIs
PublikationsstatusVeröffentlicht - 17 Sep 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Evaluation of a large-scale biomedical data annotation initiative“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren